Operafﬁ\g Systems

Syllabus

Operating Systems: Introduction to different types of opelagmb o Real Time Operating Systems,
System Components, OS services, System structure- L@@ﬁ Approach.

Process Management: Process Concept- Plocew es, Process control block, Threads, Process
Schedulng: Types of process schedulen@i” ypes of scheduling: Preemptive, Non preemptive
Schedulng algorithms; FCES, SJE, W Priory,

Deadlocks: Methods of handling deadlocks, Deadlock prevention, avoidance and detection,
Recovery from deadlocks.

Software

* Types of software:

i) System Software: Which mahage the
operation of computer |tseH"

N\
\»:;
£y 3
A N\4
.\;

li) Application Software Which performs the
actual work the user wants.

What is OS?

* An operating system is a program that acts as
an interface between the user and the
computer hardware and controls the
execution of all kmds of programs

O
y "V\ o’
:"\t\\'
\\\‘../
Y

Examples of OS

Windows XP
Windows 7
Linux/Unix
Windows 8

Functions of OS

Memory Management
Processor Management Q&
Device Management >

‘\

File Management &

Security
Control over system performance
Job accounting «

Error detecting aids

Coordination between other software and users

Memory Management

Memory management refers to management
of Primary Memory or Main Memory.

Main memory is a large aﬁ?ay of words or
bytes where each word\or byte has its own
address.

Main memory prewdes a fast storage that can
be accessed directly by the CPU.

For a program to be executed, it must in the
main memory.

An Operating System does the following activities for
memory management:

e Keeps tracks of primary memory, i.e., what part of it
are in use by whom, what part are not in use.

%)

N

‘x:\\}.l
. . GNY . .
* In multiprogramming, the OS@ecides which process
will get memory when andthow much.

X \/

Y

% .
* Allocates the memory when a process requests it to do
sO.

* De-allocates the memory when a process no longer
needs it or has been terminated.

Processor Management

In multiprogramming environment, the OS decides which
process gets the processor when and for how much time.

‘;\\

This function is called process sc\hedullng

An Operating System does the\fbllowmg activities for
processor management: &

Keeps tracks of processor\and status of process.

The program responsﬂai‘e for this task is known as traffic
controller. \

Allocates the processor (CPU) to a process.

De-allocates processor when a process is no longer
required.

Device Management

An Operating System manages device communication via
their respective drivers.

AN\
A0

. LAY
It does the following activities fof’”device management:
'\’\.“

Keeps tracks of all devices.Fhe program responsible for this
task is known as the I/C\);};\cbntroller.

Decides which process gets the device when and for how
much time.

Allocates the device in the most efficient way.
De-allocates devices.

File Management

* A file system is normally organized into
directories for easy nawgatl@h and usage.

These directories may contam files and other
directions. .\.\.:..;“

* An Operating System ‘does the following
activities for filesmanagement:

Keeps track of information, location, uses, status
etc. The collective facilities are.eften known as
file system. 4@*“

\\’«../
9 Nad
£
£ A,
K\
&
Y

: N
Decides who gets theresources.

."\}
o
{ :\\
Q..}
\ .
RN
N

Allocates the resources.

De-allocates the resources.

e Security -- By means of password and similar
other techniques, it preventshnauthorlzed
access to programs and da“”ca

'\
&
A
AN
£§ N 3
A\ Y4
\)

* Control over system performance --
Recording delays between request for a

service and response from the system.

Job accounting -- Keeping track of time and
resources used by various Jobs\énd users.

Error detecting aids -- Productlon of dumps,
traces, error messages ahd other debugging and
error detecting alds

Coordination between other software and users

Coordination and assignment of compilers,
interpreters, assemblers and other software to
the various users of the computer systems

4

Operating System — Services

x\/
AN
2
WV
N
Q..}
™ ¢
PN
3
LN
&NN°
o\
LN

Operating System — Services

* An Operating System provides services to both
the users and to the program%

* It provides programs an ehwronment to
execute. N

% \/

* It provides users the services to execute the
programs in a convenient manner.

* Following are a few common services provided
Oy an operating system: Q&

* Program execution ‘;\xa\’“’v

* |/O operations \“5\‘*

* File System manipulﬁ,\a\@;tft’\éh

» Communication &

* Error Detection

* Resource Allocation

* Protection

Program Execution

Following are the major activities of an operating

system with respect to program management:
Loads a program into memo\ry

Executes the program ”};»\"‘3‘\'
Handles program's exécutlon

Provides a mechamsm for process
synchronization™

Provides a mechanism for process
communication.

/O Operation

* An Operating System manages the
communication between user and device

. ‘ ,:\\TJ
drivers. &

* |/O operation means ré\ad or write operation
with any file or arLnypemflc /O device.

* Operating system provides the access to the
required 1/O device when required.

File System Manipulation

Following are the major activities of an operating
system with respect to file management:

Program needs to read a file or.write a file.

The operating system gives me permission to the
program for operation omflle

Permission varies from\read only, read-write,
denied, and soon. &

Operating System; prowdes an interface to the
user to create/delete files.

Operating System provides an interface to the
user to create/delete directories.

Operating System provides an interface to create
the backup of file system.

Communication

Following are the major activities of an operating
system with respect to commlmlcatlon

Two processes often reqwre&data to be
transferred between the{?h

Both the processes can "be on one computer or
on different computérs but are connected
through a computer network.

Communication may be implemented by two
methods, either by Shared Memory or by
Message Passing.

Error Handling

Errors can occur anytime and anywhere. An
error may occur in CPU, in I/@ devices or in
the memory hardware. &~

Following are the maJm activities of an
operating system wlth respect to error
handling: »ﬁ“

The OS constantly checks for possible errors.

The OS takes an appropriate action to ensure
correct and consistent computing.

Resource Management

In case of multi-user or multi-tasking
environment, resources such as-main memory,
CPU cycles and files storage; are to be allocated to
each user or job. 4

'\’.o

Following are the majo?* activities of an operating
system with respchco resource management:

The OS managesza.all kinds of resources using
schedulers.

CPU scheduling algorithms are used for better
utilization of CPU.

Protection

Following are the major activities of an
operating system with respee’t to protection:

The OS ensures that all access to system
resources is controlleet

The OS ensures tha‘t external |/O devices are
protected fromsinvalid access attempts.

The OS provides authentication features for
each user by means of passwords.

System Structure-Layered
Approach

:"\\'<
LAY
\’” v
&Y

System Structure-Layered Approach

* The operating system is divided into a
number of layers (levels), each built on top of

‘ x'\\y
lower layers.

\\" &4

 The bottom layer (Iayer 0) is the hardware;
the highest (Iayer N) is the user interface.

* With modularlty, Iayers are selected such that
each uses functions (operations) and services
of only lower-level layers.

\ o
™
(’\‘:‘

X l

I hlatmq&‘gnd O Dewices Managsment I

X

| Proceseor Schaduling

L 3

| Hardware

Types Of OS(H.W.)

Batch Operating System

Time Sharing Operating Systém
Distributed Operating Sy\s’cem
Network Operatmg System
Real Time Operatihg System

Syllabus

Operating Systems: Infrocuction to different types of operating Real Time Operating Systems,
System Components, OS services, System structure- Lavege&ﬁ)ploach

Process Management: Process Conogpt- Process g@% Plocess control block, Threads, Process
Schedulmg: Types of process schedulers I;yﬁé’so scheduling: Preempfive, Non preemptive
Schedulng algorithms; FCES, SJE, R&&nomty

Deadlocks: Methods of handling o deadlocks, Deadlck prevention, avoidance and defection,
Recovery from deadlocks.

L\
A0

N\

1Igement

Process Mar

g
£)
N/
\/
g o
Q
3N

Process

* A process is basically a program in execution.

Q)
‘;\\

y \.

* The execution of a procqss must progress in a
sequential fashion. &

A N\4
% \/
PN

»\",,/
:"\t\\'
\\\‘../
«_ \ %

* We write our camputer programs in a text file
and when we execute this program, it
becomes a process which performs all the
tasks mentioned in the program.

* When a program is loaded into the memory
and it becomes a process, |t§:én be divided
into four sections — stack; ﬁeap, text and data.

,w'\
&

\
\’:5.
\}..a

% \./

0"
\J
o
£ :\\
Q..}
\ .,
RN
N

Process iIn memory

Stack

Process

S.N. Component & Description
Stack &
1 | The process Stack contains the temposq?’y data such as method/function
parameters, return address, and local v les.
,(‘((}
5 Heap *5,\
This is a dynamically aIIocated(g{témory to a process during its runtime.
XQQ
Text NN
3 | This includes the curra}a“f\actuwty represented by the value of Program Counter
and the contents of the processor's registers.
4 Data

This section contains the global and static variables.

S

lagram

7
N/
o

Process State D

£75
'ov’\\'
S O

%

* When a process executes, it passes through
different states. &

7\
\’\,/
. O
V>
>

<@
* These stages may dlffer in different operating
systems, and the pames of these states are

also not standard&ed

In general, a process can have one of the
following five states at a time.

Process State Diagram

For I/O Devices

Start: This is the initial state when a process is first
started/created. R
RN

o\
3

L] L] L] \t?" L]
Ready: The process is waiting tode assigned to a processor.
N

Ready processes are waitiﬁr;'g\f}to have the processor
allocated to them by th\gg‘éperating system so that they can
run.

Process may come into this state after Start state or while
running it by but interrupted by the scheduler to assign
CPU to some other process.

* Running: Once the process has been assighed to
a processor by the OS scheduler, the process
state is set to running and the processor executes
its instructions. ¥

w’\’w

&

3

g

:\\ ”3

A N\4
%\
PN

m;,,/
:"\t\\'
\\\‘../
N7

 Waiting: Process moves into the waiting state if
it needs to wait for a resource, such as waiting for
user input, or waiting for a file to become
available.

* Terminated or Exit: Once the process finishes
its execution, or it is ter?nmated by the
operating system, it moved to the
terminated state whe\re |t waits to be removed
from main memor\g

QO
o)

Process Control Block

3
“~d
&
é

p
<
o
o /
N
Q..}
™ ¢
PR
N3
® :‘
o N
N
\:"‘s

A Process Control Block is a data structure

maintained by the OperatlngSystem for every
process. \

* The PCB is |dent|f|ed by an integer process ID
(PID).

\\\‘..}
\ o
™
N ’

Diagram of Process Control Block

Process ID

State <<\
0 J
>
Pointer {(b

& CPU registers

I/O information

Accounting information

— 1

etc....

S.N. Information & Description

Process State 6\\
1 | The current state of the process i.e., whett\q}lt is ready, running, waiting, or

whatever. \Qf

>
<&

5 Process privileges \\?) ‘

This is required to allow/dlsg\l@v access to system resources.

&

; | Process ID N

Unique identification for each of the process in the operating system.
4 Pointer

A pointer to parent process.

Program Counter

5 Program Counter is a pointer to the address of the next instruction to be
executed for this process.
CPU registers

6 Various CPU registers where process need to be stored for execution for
running state.

s

CPU Scheduling Information Q}

7 Process priority and other scheduling |@rmat|on which is required to schedule
the process. 6\

R

Memory management infoé?é\lon

8 | This includes the lnformatloxb page table, memory limits, Segment table
depending on memory us&ﬁ y the operating system.
Accounting mformatlon

9 This includes the amount of CPU used for process execution, time limits,
execution ID etc.

10 IO status information

This includes a list of I/O devices allocated to the process.

AN\
3\\\

N4

Process Scheduling Queues
\\\

’*\./
v
_
O
AN

Process Scheduling Queues

The Operating System maintains the following important
process scheduling queues:

N
A0

~'\;

Job queue - This queue keeps aII t3he processes in the
system. &

Ready queue - This quewé;"f(eeps a set of all processes
residing in main mema?y ready and waiting to execute. A
new process is always put in this queue.

Device queues - The processes which are blocked due to
unavailability of an I/O device constitute this queue.

Process Scheduling Queues

Job Queue » Ready Queuz({c’}y > CPU

2
“,
17,

I/O Waiting
Queue

The OS can use different policies to manage each queue
(FIFO, Round Robin, Priority, etc.).

Process Schedulers

Schedulers: Schedulers are special system
software which handle process\\schedulmg in
various ways. O

Their main task is to selectthe jobs to be
submitted into the sygtém and to decide which
process to run. Schgdulers are of three types:

Long-Term Scheduler
Short-Term Scheduler
Medium-Term Scheduler

Medium-Term

S.N. | Long-Term Scheduler | Short-Term Scheduler
Scheduler
1 It is a job scheduler It is a CPU scheduler k4= @ processaWapping
scheduler.

Speed is lesser than Speed is fastest amon Spesd 1= I hEBREEn bt
2 short and long term

short term scheduler other two o

e scheduler.
N\

It controls the degree of it prowdes{é@?er contol It reduces the degree of
3 : : over degg} of : .

multiprogramming . : multiprogramming.

multiprggramming
9
R

. .ls.almc.>st gbsent e ﬁé also minimal in time | It is a part of Time sharing

4 | minimal in time sharing :
'sharing system systems.
system
It selects processes It can re-introduce the
It selects those .

from pool and loads . process into memory and

5 processes which are

them into memory for
execution

ready to execute

execution can be
continued.

Types Of Process Scheduling
Algorithms

A Process Scheduler schedules different
processes to be assigned to the CPU based on
particular scheduling algorltbms

There are some popular process scheduling
algorithms:

First-Come, First- Served (FCFS) Scheduling
Shortest-Job-Next: ISJN) Scheduling
Priority Schedullng

Shortest Remaining Time

Round Robin(RR) Scheduling

* Non-preemptive algorithms are desighed so
that once a process enters th?e running state, it

cannot be preempted untﬁ it completes its
allotted time. '};:;“

* Preemptive schec{gﬁhg is based on priority
where a schedufer may preempt a low priority
running process anytime when a high priority
process enters into a ready state.

First Come, First Served (FCFS)

Jobs are executed on first come, first served

N

0asIs.

. :
t is a non-preemptive scheduling algorithm.
Easy to understand aﬁd implement.
ts implementatigr'is based on FIFO queue.

Poor in performance, as average wait time is
nigh.

Shortest Job First (SJF)

This is also known as shortest job Next, or SJN.
This is a non-preemptive schedﬁlmg algorithm.
Best approach to mlnlmlze Waltmg time.

Easy to implement in Batth systems where
required CPU time |s khown in advance.

Impossible to |mptement in interactive systems
where the required CPU time is not known.

The processer should know in advance how much
time a process will take.

Priority scheduling

Priority scheduling is a non-preemptive algorithm
and one of the most common g\chedulmg
algorithms in batch systemsx

Each process is asmgnegl\a priority. Process with
highest priority is to bg'executed first and so on.

Processes with same prlorlty are executed on first
come first served: basis.

Priority can be decided based on memory
requirements, time requirements or any other
resource requirement.

Shortest Remaining Time

Shortest remaining time (SRT) is the preemptive
version of the SIN algorithm &

The processor is allocated t@ the job closest to

completion but it can Iqebreempted by a newer
ready job with shorter time to completion.

Impossible to |mpfement in interactive systems
where required CPU time is not known.

It is often used in batch environments where
short jobs need to be given preference.

Round Robin Scheduling

Round Robin is a preemptive process
scheduling algorithm. RS

Each process is prowded a§f|x time to execute;
it is called a quantum. & >

Once a process is executed for a given time
period, it is preembted and other process
executes for a given time period.

Context switching is used to save states of
preempted processes.

A thread is called a lightweight process.

Threads provide a way to improve application
performance through paraILéhsm

Each thread belongs to exactly one process and
no thread can exist out5|de a process.

Each thread represéhts a separate flow of
control. 3

Threads have been successfully used in
implementing network servers and web server.

Difference between Process and
Thread

S.N. Process Thread

1 Process is heavy weight or resource | Thread is lightweight, taking lesser

intensive. resourgés than a process.
€0

5 Process switching needs interaction | Thoead switching does not need to

with operating system. \@t\eract with operating system.
b

In multiple processing Q}Q

3 environments, each process \<\Z> All threads can share same set of open
executes the same code but its | files, child processes.
own memory and file resou@s.
If one process is bloc.lste‘if then no | While one thread is blocked and

4 other process can exeslute until the | waiting, a second thread in the same
first process is unblocked. task can run.

5 Multiple processes without wusing | Multiple threaded processes use fewer
threads use more resources. resources.
In multiple processes each process g) _.]

6 operates independently of the One thread can read, write or change

others.

another thread's data.

Advantages of Thread

Threads minimize the context switching time.
Use of threads provides co\n;ﬁ]rrency within a

process. @

Efficient communication.
It is more economical to create and context
switch threads:*

Threads allow utilization of multiprocessor
architectures to a greater scale and efficiency.

Types of Thread

* Threads are implemented in following two
ways: &

N
* User Level Threads -- Us@'?‘” managed threads

* Kernel Level Threads e Operatmg System
managed threadsa‘ctmg on kernel, an
operating system core.

Register Counter Stack
Data Files
Code 0}9
| @“&}
]
Single Thread

Single Process P with single thread

Register Register Register
Counter ;A Counter Counter
s@‘ . | Stack Stack
&°
¥
\u\\
Data Files
: A
= Code
]
]
i
i |
'
i
First Thread Second Thread Third Thread

Single Process P with three threads

Multithreading Models

Multithreading models are three types:

Many-to-many relations‘h\ip
Many-to-one relatlonshlp
One-to-one relatibnshlp

:";:\\
N
\
NN

LN

Many-to-Many Model

* The many-to-many model multiplexes any
number of user threads onte“an equal or
smaller number of kernel ﬁ\reads

..'\
&
3
PR
£y 3
A N\4
%x\/
A

Many-to-One Model

 Many-to-one model maps many user level

threads to one Kernel-level thread.
\3

 Thread management is déne in user space by
the thread library. &%

x\)
"I‘ W

m;"“;
:"\t\\'
\\\‘../
Y

One-to-One Model

* There is one-to-one relationship of user-level
thread to the kernel-level thmad

* This model provides mone concurrency than
the many-to-one mq\cj,el.

O
y "V\ o’
:"\t\\'
\\\‘../
Y

Deadlock

a) Deadlock possible b) Deadlock

Resource Allocation Graphs

A useful tool in characterizing the allocation of resources to processes is
the resource allocation graph.

C }‘;
N/

A

D
It is a directed graph that depicts a state,0f the system of resources &
processes, with each process & eachu;(é?s"ource represented by a node.

g
t\ 3
\\.l
% \/

$

97 N

A graph edge directed from a‘process to a resource indicates a resource
that has been requested hy‘the process but not yet granted.

Within a resource node a dot is shown for each instance of that resource.

A graph edge directed from reusable resource node dot to a process
indicates a request that has been granted.

The Conditions for Deadlock

3 conditions of policy must be present for a deadlock to be possible:

Mutual Exclusion: Only 1 process may. LES\e a resource at a time. No
process may access a resource unit tha&has been allocated to another
process. @

p wx\’\. 4

Hold & Wait: A process may. hold allocated resources while
awaiting assignment of other Tesources.

No preemption: No reﬁé‘burce can be forcibly removed from a
process holding it.

Circular wait: A closed chain of processes exists, such that process
holds at least one resource needed by the next process in the chain.

Deadlock Prevention

Indirect method of deadlock prevention is to prevent
the occurrence of one of the three necessary
conditions. &

O

:\{“
Direct method is to preventthe occurrence of circular
wait

S
y W\ o’
:"\t\\'
\\\‘../
\ .

Mutual Exclusion &
Hold & Wait |
No Preemption
Circular Wait

Deadlock Avoidance

* Do not start a process if its demands might

LN

lead to deadlock.
‘x:\\y
\V

P \s

* Do not grant an mcrernental resource request
to a process if thl&allocatlon might lead to

deadlock.

Process initiation denial(Bankers
Algo)

Consider the system of n processes & m different types of
resources.

Resource =R = (R1. R2......Rm) (.5({\
Available =V = (VL. V2.....Vm) 3"
Claim = C = cir c12 2. Clm'
c21 c22. ... C2m
W
. >
Q
Cnl Qﬁ%n? Cnm |
- &
7 \
Allocation=A =,/ All Al2 e Alm
A21 A22 A2m

Anl An2 Anm

* Following relationships hold:
1) Rj=Vj+3Aij i=1ton forallj .

2) Cij <=Rj foralli,]
3) Aij <= Cij ~@for all i,
;.;'\"
N
. "’x\?nl
Start a new process only i~

Rj >= C(n+1)j + > Cij Iflz\l ton forallj

That is a process is only started if the maximum claim of
all current processes plus those of the new process
can be met

Bankers Algorithm

o T:’liS strategy is call banker’s algorithm.

R2 R3 R1 R1T R2 R3
Bﬂﬂ P1 ﬂﬂﬂ
P2 P2 °0
P3 3 1 4 P3 1 0 3
A\
s BRI P4R0 0 2 r4 B I G
Claim Matrix C $§,Allocation Matrix A C-A
Ghr¥cy Caee
Resource Vector R Available Vector V

(a) Initial State

P1
P2
P3
P4

R2 R3 R2 R3
- P -nn
P2 3 P2
P3 < IS § 4 P3| 29 i 1
P4 " 2 P4 0 O %\\
Claim Matnx C Allocatlon M’a?nx A

®R1

Resource Vector %&,{Q
R2 R3

3
4 Z | 2

Claim Matrix C

R1 R2 R3
9 |3]6

R2 R3

g;@nn

P3| 2
P4 0 0 2

Allocation Matrix A

R1 R2 R3
712 [3

R1T R2 R3
P1
P2 50| G | 110
P3 e 18
P4 [F40 B9 IS0
C-A

R2 R3

° [CHENEN

Available Ve%qr V R R3

P ﬂﬂﬂ

P2 B0
P3 0 3
P4 4 2 0

R2 R3 R2 R3 R2 R3

| ﬂ-ﬂ M nnn & ﬂﬂﬂ

P2 0 0 @“’ 2 0 0

&\

03 g P300<<\Q’0 3 0 0 0
P4 [N RS P40Q“02 04 490

Claim Matrix C ﬁocatlon Ma nx A C-A
R1T R2 R

Resource Vector R Available Vector V

R2 R3

Deadlock Detection

R2 R3 R4 R5 R2 R3 R4 R5 R2 R3 R4 R5
pml-ﬁlﬂ- P1-ﬂ-l:lﬂ E--EEI
p2 0 P2EERN N8 <@ Resource Vector

p30 0 0 0 1 P30 0 0 (510 0
g\

Allocation Vector

Request Matrix Q Alloc Matrix A

Mark P4, because P4 has Qg;,‘acliocated resources
Set W=(00001).

The request of proces@ Is less than or equal to W, so mark P3 &
set W=W+(00010)=(00011).

4. No other unmarked process has a row in Q that is less than or equal
to W. Therefore terminate the algorithm.

SN =X

The algorithm concludes with P1 & P2 unmarked, indicating that
these processes are deadlocked.

Deadlock Recovery

 There are various ways of recovery from

deadlock.
1. Recoveryt
2. Recoveryt

3. Recoveryt

Q)
\\

\:\/
nrough preemptlon

nrough rQHback

1rough1<|llmg process.

Deadlock Recovery

* Following are possible approaches for recovery once deadlock is detected.

Abort all deadlocked processes. ~
Back up each deadlocked process to Js@‘ﬁ'e previously defined
checkpoint & restart all processes,ﬁl‘ﬁﬁis requires that rollback & restart
mechanisms be built in to the §\35§Fem.

\t. 3

N/

X
Successively abort deadlggkﬁed process until deadlock no longer exists.
Detection algorithm n%e;e&s to be reinvoked.
Successively preempt resources until deadlock no longer exist. A
process that has a resource preempted from it must be rolled back to
a point prior to its acquisition of that resource.

	Slide 1: Unit 4
	Slide 2: Syllabus
	Slide 3: Software
	Slide 4: What is OS?
	Slide 5
	Slide 6: Examples of OS
	Slide 7: Functions of OS
	Slide 8: Functions of OS
	Slide 9: Memory Management
	Slide 10
	Slide 11: Processor Management
	Slide 12: Device Management
	Slide 13: File Management
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Operating System ─ Services
	Slide 18: Operating System ─ Services
	Slide 19
	Slide 20: Program Execution
	Slide 21: I/O Operation
	Slide 22: File System Manipulation
	Slide 23: Communication
	Slide 24: Error Handling
	Slide 25: Resource Management
	Slide 26: Protection
	Slide 27: System Structure-Layered Approach
	Slide 28: System Structure-Layered Approach
	Slide 29
	Slide 30
	Slide 31: Types Of OS
	Slide 32: Types Of OS(H.W.)
	Slide 33: Syllabus
	Slide 34: Process Management
	Slide 35: Process
	Slide 36
	Slide 37: Process in memory
	Slide 38: Process
	Slide 39: Process State Diagram
	Slide 40
	Slide 41: Process State Diagram
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Process Control Block
	Slide 46
	Slide 47: Diagram of Process Control Block
	Slide 48
	Slide 49
	Slide 50: Process Scheduling Queues
	Slide 51: Process Scheduling Queues
	Slide 52: Process Scheduling Queues
	Slide 53: Process Schedulers
	Slide 54
	Slide 55: Types Of Process Scheduling Algorithms
	Slide 56
	Slide 57: First Come, First Served (FCFS)
	Slide 58: Shortest Job First (SJF)
	Slide 59: Priority scheduling
	Slide 60: Shortest Remaining Time
	Slide 61: Round Robin Scheduling
	Slide 62: Threads
	Slide 63
	Slide 64: Difference between Process and Thread
	Slide 65: Advantages of Thread
	Slide 66: Types of Thread
	Slide 67
	Slide 68: Multithreading Models
	Slide 69: Many-to-Many Model
	Slide 70: Many-to-One Model
	Slide 71: One-to-One Model
	Slide 72: Deadlock
	Slide 73: Deadlock
	Slide 74: Resource Allocation Graphs
	Slide 75
	Slide 76: The Conditions for Deadlock
	Slide 77: Deadlock Prevention
	Slide 78: Deadlock Avoidance
	Slide 79: Process initiation denial(Bankers Algo)
	Slide 80
	Slide 81: Bankers Algorithm
	Slide 82
	Slide 83
	Slide 84: Deadlock Detection
	Slide 85: Deadlock Recovery
	Slide 86: Deadlock Recovery

